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Abstract
A probability density characterization of multipartite entanglement is tested on
the one-dimensional quantum Ising model in a transverse field. The average
and second moment of the probability distribution are numerically shown to be
good indicators of the quantum phase transition. We comment on multipartite
entanglement generation at a quantum phase transition.

PACS numbers: 03.67.Mn, 73.43.Nq, 75.10.Pq, 03.67.−a

1. Introduction

Quantum phase transitions are characterized by nonanalyticity in the properties of the states
of a physical system [1]. They differ from classical phase transitions in that they occur at zero
temperature and are therefore driven by quantum (rather than thermal) fluctuations.

The research of the last few years has unearthed remarkable links between quantum phase
transitions (QPTs) and entanglement [2–5]. The study of these inherently quantum phenomena
has mainly focused on bipartite entanglement, by using the entropy of entanglement [6], i.e.
the von Neumann entropy of one part of the total system in the ground state. Notwithstanding
the large amount of knowledge accumulated, the properties of the multipartite entanglement
of the ground state at the critical points of a QPT are not clear yet. This is also due to the
lack of a unique definition of multipartite entanglement [7]. Different definitions tend indeed
to focus on different aspects of the problem, capturing different features of the phenomenon
[8], that do not necessarily agree with each other. This is basically due to the fact that, as the
size of the system increases, the number of measures (i.e. real numbers) needed to quantify
multipartite entanglement grows exponentially. For all these reasons, the quantification of
multipartite entanglement is an open and very challenging problem.

In the study of a QPT, the above-mentioned problems are of great importance. The
evaluation of entanglement measures bears serious computational difficulties, because the
ground states involve exponentially many coefficients. The issue is therefore to understand
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how to characterize entanglement, e.g. by identifying one key property that can summarize its
multipartite features. Our strategy will be to look at the probability density function of the
purity of a subsystem over all bipartitions of the total system. The average of this function will
determine the amount of global entanglement in the system, while the variance will measure
how well such entanglement is distributed: a smaller variance will correspond to a larger
insensitivity to the choice of the bipartition and, therefore, will witness if entanglement is
really multipartite.

This approach, introduced in [9], makes use of statistical information on the state and
extends in a natural way the techniques used for the bipartite entanglement. It is interesting
to note that the idea that complicated phenomena cannot be ‘summarized’ by a single (or a
few) number(s) was already proposed in the context of complex systems [10] and has been
also considered in relation to quantum entanglement [11]. We applied our characterization of
multipartite entanglement to a large class of random states [12, 13], obtaining sensible results
[9, 14].

In this paper, we will characterize in a similar way the multipartite entanglement of the
(finite) Ising model in a transverse field. Our numerical results will corroborate previous
findings and yield new details about the structure of quantum correlations near the quantum
critical point.

2. Probability density function characterization of multipartite entanglement

We shall focus on a collection of n qubits and consider a partition in two subsystems A and
B, made up of nA and nB qubits (nA + nB = n), respectively. For definiteness we assume
nA � nB . The total Hilbert space is the tensor product H = HA ⊗ HB with dimensions
dimHA = NA = 2nA, dimHB = NB = 2nB and dimH = N = NANB = 2n.

We shall consider pure states

|ψ〉 =
N−1∑
k=0

zk|k〉 =
NA−1∑
jA=0

NB−1∑
lB=0

zjAlB |jA〉 ⊗ |lB〉, (1)

where the last expression is adapted to the bipartition: |k〉 = |jA〉 ⊗ |lB〉, with a bijection
between k and (jA, lB). Think for example of the binary expression of an integer k in terms of
the binary expression of (jA, lB). We define the purity (linear entropy) of the subsystem

πAB(|ψ〉) = TrA ρ2
A, ρA = TrB ρ, ρ = |ψ〉〈ψ |, (2)

with TrA (TrB) being the partial trace over subsystem A (B), and take as a measure of the
bipartite entanglement between A and B the participation number

NAB = π−1
AB, (3)

that measures the effective rank of the matrix ρA, namely the effective Schmidt number [15].
The quantity nAB = log2 NAB represents the effective number of entangled qubits, given the
bipartition (pictorially, the number of bipartite entanglement ‘links’ that are ‘severed’ when
the system is bipartitioned). By plugging (1) into (2) one gets

NAB(|ψ〉) =



NA−1∑
j,j ′=0

NB−1∑
l,l′=0

zjl z̄j ′lzj ′l′ z̄j l′




−1

. (4)

This is the key formula of our numerical investigation.
Clearly, the quantity NAB will depend on the bipartition, as in general entanglement will

be distributed in a different way among all possible bipartitions. We are pursuing the idea that
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the density function p(NAB) of NAB yields information about multipartite entanglement [9].
We note that

1 � NAB = NBA � NA (� NB), (5)

where the maximum (minimum) value is obtained for a completely mixed (pure) state
ρA. Therefore, a larger value of NAB corresponds to a more entangled bipartition (A,B).
Incidentally, we note that the maximum possible bipartite entanglement Nmax

AB = Nmax
A = 2[n/2]

can be attained only for a balanced bipartition, i.e. when nA = [n/2] (and nB = [(n + 1)/2]),
where [x] is the integer part of the real x, that is the largest integer not exceeding x. We
emphasize that the use of the inverse purity (linear entropy) (3) is only motivated by simplicity.
Any other measure of bipartite entanglement, such as the entropy (or any Tsallis entropy [16]),
would yield similar results.

3. Entanglement distribution: critical Ising chain in a transverse field

We now apply the characterization of multipartite entanglement to the quantum Ising chain in
a transverse field, described by the Hamiltonian

H = −g

n−1∑
i=1

σ z
i σ z

i+1 − (1 − g)

n∑
i=1

σx
i + ε

n∑
i=1

σ z
i (6)

(with open boundary conditions, σ being the Pauli matrices). Note that we added a (small, site
independent) longitudinal field ε. If ε = 0, it is known from conformal field theory [17] and
numerical simulations based on accurate analytical expressions [3] that at the critical point
g = gc = 1/2 the entanglement entropy

SAB = −TrA(ρA log2 ρA) (7)

diverges with a logarithmic law

SAB ∼ 1
6 log2 �. (8)

Here, entanglement is evaluated by considering a block A of contiguous spins whose length �

is less than one-half the total length n of the chain. Due to (approximate) translation invariance,
in our approach this is equivalent to considering the average entanglement over a subset of the
bipartitions of the system (that tend to be balanced when � tends to n/2).

3.1. A typical distribution

We intend to evaluate the distribution of bipartite entanglement over all balanced bipartitions
and, therefore, the multipartite entanglement. Here and in the whole paper, the Hamiltonian
will be exactly diagonalized in order to obtain the ground state, then NAB will be explicitly
evaluated as a function of g and its distribution plotted. The results are exact, but the quantum
simulation time consuming and for this reason n cannot be too large.

The distribution of the participation number NAB as g varies, for n = 10 qubits and
ε = 0, is shown in figure 1. We note that the distribution is always well behaved and bell
shaped, being practically a δ function for g � 0.1 and g � 0.75. For this reason, one can get
a satisfactory characterization of multipartite entanglement by looking at its mean value and
width

µ = 〈NAB〉, σ 2 = 〈(NAB − µ)2〉, (9)

where the average 〈· · ·〉 is evaluated over all balanced bipartitions. We recall that µ defines the
amount of entanglement while the inverse width σ−1 describes how fairly such entanglement is
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Figure 1. Distribution function of the participation number NAB over all balanced bipartitions for
the Hamiltonian (6) when ε = 0 and n = 10. The distribution is always bell shaped. Its width is
maximum at g = 0.5, while its average entanglement (indicated by a black arrow) is maximum
at g = 0.56. Note the different scales on the ordinates. The number of balanced bipartitions is

np =
(

n
[n/2]

)
=

(
10
5

)
= 252.

(This figure is in colour only in the electronic version)
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Figure 2. (a) Average µ and (b) standard deviation σ of NAB over all balanced bipartitions for
n = 9 sites in the 1D quantum Ising model in a transverse field of strength 1 − g and a small
longitudinal field of strength ε. Squares: ε = 0; stars: ε = 10−6; triangles: ε = 10−4; diamonds:
ε = 10−2.

distributed. We note that the width σ is maximum at g = 0.5, while the average entanglement
µ is maximum at g = 0.56. Observe that no singularities can be expected for a number of
spins as small as n = 10, yet the behaviour of both quantities clearly foreruns the quantum
phase transition at g = gc = 1/2. In this sense, both σ and µ appear to be good indicators of
the QPT.

3.2. Average and width

Let us consider the full Hamiltonian (6) when the longitudinal perturbing field is small. In
figure 2, we plot µ and σ , respectively, versus g for the ground state of the Hamiltonian (6),
when n = 9, for different values of ε (ranging from 0 to 10−2). We note a very different
behaviour of the two quantities. The average µ is very sensitive to the longitudinal perturbation.
In the region g � 1, where the ground state is approximately a GHZ state when ε = 0, the
average entanglement is strongly reduced even for a very small value of ε (� 10−6). This
is basically due to the fact that the superposition |all spins up〉 + |all spins down〉 (yielding
µ = 2) is very fragile and the ground state collapses in one of the two (degenerate) classical
ground states (yielding µ = 1), the Z2 symmetry being broken. On the other hand, near the
maximum, µ is more robust and a larger perturbation (ε = 10−2) is required to counter larger
values of (1 − g) and modify the behaviour of µ.

The behaviour of σ is different. When ε � 10−2 the curves are not modified by the
presence of the longitudinal field. This is due to the fact that in the region where µ is reduced
by the presence of ε, σ is already near to 0 (a GHZ state has σ = 0 because it is invariant for
permutation of the qubits, see [9]). Of course, a sufficiently large value of ε also affects σ ,
reducing it (but not modifying the shape of σ(g)).

We shall now focus on the critical region. It would be tempting to take a small value
of ε (say, ε = 10−6) in order to get rid of the spurious residual entanglement at g � 1 (and
obtain a bell-shaped function for µ, as well as for σ ). However, since we aim at a precise
determination of the coordinates of the maximum, which is unaffected by small values of ε,
we decided to work with ε = 0.

3.3. Purely transverse Ising chain

In figure 3, we evaluate the average and standard deviation for ε = 0 (purely transverse) Ising
chains of increasing size (from 7 to 11 sites). In figure 3(a), we distinguish different zones.
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Figure 3. (a) Average µ and (b) standard deviation σ of NAB over all balanced bipartitions (from
n = 7 to 11 sites) for the purely transverse 1D Ising chain. Full squares: 11 sites; open triangles:
10 sites; open squares: 9 sites; full triangles: 8 sites; open diamonds: 7 sites. µ can be viewed as
a measure of the average multipartite entanglement, while σ−1 can be viewed as a measure of how
fairly this entanglement is shared. Both µ and σ are good indicators of the QPT that takes place
at g = 0.5. Interestingly, σmax precedes µmax.

For g = 0, the ground state (gs) is factorized and µ = 1. If g � 1, the gs is approximately
a GHZ state (a combination of the gs’s of the classical Hamiltonian). The most interesting
region is around the value g = 0.5, where for an increasing number of qubits there is a more
and more pronounced peak of µ. This is in qualitative agreement with other results obtained
using the entropy of entanglement.

The width of the distribution of NAB versus g is shown in figure 3(b). We will comment
later on the behaviour of this quantity that yields useful additional information about the
structure and generation of multipartite entanglement (information that would not be available
for an entanglement measure constituted by a single number). Also in this case we can
distinguish several regions in the plot. Moreover, the coupling g corresponding to the peak of
σ (that we denote as σmax) does not coincide with that corresponding to the peak of µ (that we
denote as µmax):

g(σmax) < g(µmax). (10)

In other words, for a finite spin chain, the width of the distribution is not maximum when the
amount of entanglement is maximum.

We note that, by increasing n, both maxima are shifted towards the centre of the plot
g → gc = 0.5. In figure 4(a), we plot the values of the coupling constant g at µmax versus the
number of sites n. The numerical result can be fitted with the (arbitrary) function

g(µmax) = 0.5 +
5.43

n2 + 3.09n − 35.59
n→∞−→ 0.5 = gc. (11)

The plot of g(σmax) versus n is shown in figure 4(b), the fit being

g(σmax) = 0.5 +
0.14

n2 − 13.01n + 46.39
n→∞−→ 0.5 = gc. (12)

Note that the fit (11) is very accurate, while (12) is valid within one standard deviation (namely
a few per cent), as can be seen in figure 4. From figure 4 and equations (11), (12) one can
argue that the amount of entanglement (the mean of the distribution) and the maximum width
of the distribution of bipartite entanglement can detect, in the limit of large n, the QPT.

We shall henceforth focus on µmax and σ(µmax) = σ(g(µmax)) (the value of σ when the
amount of entanglement is maximum), rather than σmax (whose behaviour is anyway similar).



Entanglement in QPTs 8015

7 8 9 10 11
n

0.56

0.58

0.6

0.62

0.64

g( max) g( max)
(a)

7 8 9 10 11
n0.505

0.51

0.515

0.52

0.525

0.53

(b)
µ σ

Figure 4. Coupling constant g corresponding to (a) µmax and (b) σmax versus n. Note that
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only by a few per cent. The error bars (one standard deviation) are explicitly indicated.
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Figure 5. (a) Entanglement µmax and (b) standard deviation at the maximum entanglement
σ(µmax) versus n. The error bars (one standard deviation) are explicitly indicated.

In figure 5, we plot these quantities versus the number of spins n. They are fitted by (for
n � 6)

µmax = 2 + 0.019(n − 6) + 0.007(n − 6)2, (13)

σ(µmax) = −0.077 + 0.11
√

n − 6. (14)

We also evaluate the relative width at maximum entanglement

σrel = σ(µmax)/µmax, (15)

as shown in figure 6, that will be useful in the following discussion. The fitting curve in figure 6
is not independent, but is rather derived from equations (13), (14):

σrel = −0.077 + 0.11
√

n − 6

2 + 0.019(n − 6) + 0.007(n − 6)2 . (16)

4. Discussion

Both fits (13), (14) imply that the entanglement indicators σ and µ diverge with n at the QPT.
This conclusion is particularly significant: the amount of entanglement goes to infinity but
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so does the width of the entanglement distribution. In particular, this leads to two possible
scenarios, depending on the behaviour of σrel defined in (15):

(i) σrel
n→∞−→ 0. In this case, the divergence of µmax is stronger than that of σ(µmax) � σmax.

This means that at the QPT the entanglement of the ground state is macroscopically
insensitive to the choice of the bipartition. Accordingly, the QPT yields a fair distribution
of bipartite entanglement and is therefore a good tool for generating multipartite
entanglement. This conclusion could pave the way towards a deeper understanding of
the relation among entanglement, QPTs and chaotic systems (that are known to generate
large amounts of entanglement [13, 18]).

(ii) σrel
n→∞−→ c > 0 (eventually ∞). This situation would have profound consequences on

our comprehension of the relation between a QPT and the generation of multipartite
entanglement. In particular, the strong divergence of σ(µmax) (of order equal to or larger
than that of µmax) would imply that the distribution of entanglement is not optimal,
inasmuch as it is not fairly shared. This means that the amount of entanglement of
non-contiguous spins partitions macroscopically differs from that of contiguous ones.

Our results, although not conclusive due to the relatively small value of n reached in our
numerical analysis, appear to indicate that (i) is the most probable scenario: indeed, from
equation (16), that in turn is a consequence of equations (13), (14), we infer that for large n

σrel ∼ n−3/2. (17)

In general, if one assumes that the behaviour of µmax and σ(µmax) versus n (and in particular
the convexity of the two curves) does not change for larger n, one can conclude that σrel

vanishes for n → ∞.
Another important observation, related to the ‘entangling power’ of evolutions [19], is

the following. Although our numerical results seem to favour the first scenario, namely a
well-distributed multipartite entanglement generated by the quantum phase transition, such
entanglement is not so large. Indeed, a typical n-qubit state is characterized by [9]

µ ∝ 2n/2, σ = const, (18)

namely an exponentially large amount of entanglement, that is also very well distributed.
These typical states are efficiently produced by a chaotic dynamics [13, 18]. In general, one
observes a very rapid growth of the (effective) Schmidt number (3) at the onset of chaos and
for all these reasons quantum chaos is a much better multipartite entanglement generator than
a critical Ising chain. This conclusion seems to be valid for other spin Hamiltonians as well.
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Note that the entangling power (and/or entanglement generation) of a QPT is better compared
to that of a chaotic system [18] (in that they are both obtained by varying one or more coupling
constants), rather than that of a quantum evolution [19]. On the other hand, unlike in a chaotic
system, in a QPT one focuses on the features of the ground state.

The entanglement generation at a QPT and the physical features of this entanglement
[20, 21] deserve additional investigations. The participation number or the entropy of
entanglement (or any other sensible measure) are related to the global structure of the state.
It is therefore reasonable to expect that many observables might be necessary in order to
characterize multipartite entanglement. The approach we propose [9, 14], based on the
calculation of the probability density function of bipartite entanglement, has the advantage of
making use of statistical information on the state of the system and characterizes multipartite
entanglement by extending techniques that are widely used in the analysis of its bipartite
aspects. We have seen that when the density functions are well behaved and bell shaped,
the average and second moment of the distribution are good indicators of the quantum phase
transition. These conclusions must be corroborated by the study of other systems and models
displaying quantum phase transitions, as well as by the analysis of more complex systems
[10, 11]. Work is in progress in this direction.
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